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190

Determine which neurons spiked in a

previous timestep, and reset the —191
potential of those neurons

Perform neuron spiking by pulsing a
row (or axon) of the synapse array,
read value of each synapse intherow |92
and pass it to a connected neuron,
and obtain external input for
each neuron

Each neuron checks a column (or
dendrite) of the synapse array for
synapses in their "pulsed” state and 103
reads their values, and integrates the
synapse (excitatory / inhibitory) inputs as
external input to the neuron potential

Depending on the time elapsed since

each neuron spiked, probabilistically

change a connected synapse value, ——194

and write the new synapse value
into the synapse array

Determine which neurons will spike

the next timestep by comparing each 195
neuron potential against a threshold

FIG. 2B
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RECONFIGURABLE AND CUSTOMIZABLE
GENERAL-PURPOSE CIRCUITS FOR
NEURAL NETWORKS

GOVERNMENT RIGHTS

This invention was made with Government support under
HRO0011-09-C-0002 awarded by Defense Advanced
Research Projects Agency (DARPA). The Government has
certain rights in this invention.

BACKGROUND

The present invention relates to neuromorphic and syn-
aptronic systems, and in particular, reconfigurable and cus-
tomizable general-purpose circuits for neural networks.

Neuromorphic and synaptronic systems, also referred to
as artificial neural networks, are computational systems that
permit electronic systems to essentially function in a manner
analogous to that of biological brains. Neuromorphic and
synaptronic systems do not generally utilize the traditional
digital model of manipulating Os and 1s. Instead, neuromor-
phic and synaptronic systems create connections between
processing elements that are roughly functionally equivalent
to neurons of a biological brain. Neuromorphic and synap-
tronic systems may comprise various electronic circuits that
are modeled on biological neurons.

In biological systems, the point of contact between an
axon of a neuron and a dendrite on another neuron is called
a synapse, and with respect to the synapse, the two neurons
are respectively called pre-synaptic and post-synaptic. The
essence of our individual experiences is stored in conduc-
tance of the synapses. The synaptic conductance changes
with time as a function of the relative spike times of
pre-synaptic and post-synaptic neurons, as per spike-timing
dependent plasticity (STDP). The STDP rule increases the
conductance of a synapse if its post-synaptic neuron fires
after its pre-synaptic neuron fires, and decreases the con-
ductance of a synapse if the order of the two firings is
reversed.

BRIEF SUMMARY

Embodiments of the invention describe a reconfigurable
neural network circuit. In one embodiment, the reconfigu-
rable neural network circuit comprises an electronic synapse
array including multiple synapses interconnecting a plurality
of digital electronic neurons. Each neuron comprises an
integrator that integrates input spikes and generates a signal
when the integrated inputs exceed a threshold. The circuit
further comprises a control module for reconfiguring the
synapse array. The control module comprises a global final
state machine that controls timing for operation of the
circuit, and a priority encoder that allows spiking neurons to
sequentially access the synapse array.

These and other features, aspects and advantages of the
present invention will become understood with reference to
the following description, appended claims and accompa-
nying figures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 shows a diagram of a neuromorphic and synap-
tronic network comprising a crossbar array of electronic
synapses interconnecting electronic neurons, in accordance
with an embodiment of the invention;
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FIG. 2A shows a diagram of a neuromorphic and synap-
tronic circuit comprising a reconfigurable fully-connected
neural network circuit with N neurons and NxN synapses, in
accordance with an embodiment of the invention;

FIG. 2B shows a process for updating/programming syn-
apses in the circuit of FIG. 2A, in accordance with an
embodiment of the invention;

FIG. 3 shows a diagram of a digital electronic neuron in
the circuit of FIG. 2A, in accordance with an embodiment of
the invention;

FIG. 4 shows a diagram of a crossbar array of electronic
synapses and details of an electronic synapse at a cross-point
junction of the crossbar array in the circuit of FIG. 2A, in
accordance with an embodiment of the invention;

FIG. 5 shows a system timing diagram for neuron and
synapse operations in the circuit of FIG. 2A, in accordance
with an embodiment of the invention;

FIG. 6 shows another system timing diagram for neuron
and synapse operations in the circuit of FIG. 2A, in accor-
dance with an embodiment of the invention;

FIG. 7 shows a system timing diagram for pipelining
neuron and synapse operations in the circuit of FIG. 2A, in
accordance with an embodiment of the invention;

FIG. 8 shows learning mode processes based on learning
rules for synapse updates in the circuit of FIG. 2A, in
accordance with an embodiment of the invention;

FIG. 9 shows further learning mode processes based on
learning rules for synapse updates in the circuit of FIG. 2A,
in accordance with an embodiment of the invention;

FIG. 10 shows an example neural network chip architec-
ture based on the circuit of FIG. 2A, in accordance with an
embodiment of the invention;

FIG. 11 shows an example application of a neural network
for pattern recognition, in accordance with an embodiment
of the invention;

FIG. 12 shows a diagram of a neuromorphic and synap-
tronic circuit comprising a crossbar array of multi-bit elec-
tronic synapses for interconnecting digital electronic neu-
rons, in accordance with an embodiment of the invention;

FIG. 13 shows a diagram of a digital electronic neuron in
the circuit of FIG. 12, in accordance with an embodiment of
the invention;

FIG. 14 shows a diagram of a crossbar array of electronic
synapses and details of a multi-bit electronic synapse at a
cross-point junction of the crossbar array in the circuit of
FIG. 12, in accordance with an embodiment of the inven-
tion;

FIG. 15 shows a system timing diagram for neuron and
synapse operations in the circuit of FIG. 12, in accordance
with an embodiment of the invention;

FIG. 16 shows learning mode processes based on learning
rules for synapse updates in the circuit of FIG. 12, in
accordance with an embodiment of the invention;

FIG. 17 shows further learning mode processes based on
learning rules for synapse updates in the circuit of FIG. 12,
in accordance with an embodiment of the invention; and

FIG. 18 shows a high level block diagram of an infor-
mation processing system useful for implementing one
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the invention provide reconfigurable and
customizable general-purpose circuits for neural networks.
Embodiments of the invention further provide neuromorphic
and synaptronic systems based on the reconfigurable and
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customizable general-purpose circuits, including crossbar
arrays which implement learning rules for re-enforcement
learning.

An embodiment of the reconfigurable and customizable
general-purpose circuit provides a system-level computa-
tion/communication platform comprising a neural network
hardware chip. The circuit provides a reconfigurable com-
pact and low-power digital CMOS spiking network imple-
menting binary stochastic STDP on a static random access
memory (SRAM) synapse array interconnecting digital neu-
rons. A priority encoder sequentially grants array access to
all simultaneously spiking neurons to implement communi-
cation of synaptic weights for programming of synapses. A
global finite state machine module controls timing for opera-
tion of the circuit. Driver module receives digital inputs
from neurons for programming the synapse array using
programming phases. Sense amplifiers measure the state of
each synapse and convert it to binary data, representing data
stored in the synapse.

Each digital neuron further comprises a learning module
including two digital counters that decay at a pre-specified
rate (e.g., about 50 ms) at each timestep and are reset to a
pre-defined value when a neuron spiking event occurs. A
linear feedback shift register (LFSR) generates a new ran-
dom number (e.g., pseudo random number) during every
programming phase. A comparator provides a digital signal
that determines whether or not a connected synapse is
updated (i.e., programmed). This implements probabilistic
updates of synapses according to the learning rule specified
in the decay rate of the counter.

Timing operations of the general-purpose hardware cir-
cuit for neural networks involves a timestep (e.g., based on
a biological timestep) wherein within such a timestep mul-
tiple neuron spikes and synapse updates are sequentially
handled in a read phase and a write phase, respectively,
utilizing a digital clock. Further, variable timesteps may be
utilized wherein the start of a next timestep may be triggered
using handshaking signals whenever the neuron/synapse
operation of the previous timestep is completed. For external
communication, pipelining is utilized wherein load inputs,
neuron/synapse operation, and send outputs are pipelined
(this effectively hides the input/output operating latency).

Referring now to FIG. 1, there is shown a diagram of a
neuromorphic and synaptronic circuit 10 having a crossbar
array 12 in accordance with an embodiment of the invention.
In one example, the overall circuit may comprise an “ultra-
dense crossbar array” that may have a pitch in the range of
about 0.1 nm to 10 um. The neuromorphic and synaptronic
circuit 10 includes a crossbar array 12 interconnecting a
plurality of digital neurons 14, 16, 18 and 20. These neurons
are also referred to herein as “electronic neurons”. Neurons
14 and 16 are dendritic neurons and neurons 18 and 20 are
axonal neurons. Neurons 14 and 16 are shown with outputs
22 and 24 connected to dendrite paths/wires (dendrites) 26
and 28, respectively. Neurons 18 and 20 are shown with
outputs 30 and 32 connected to axon paths/wires (axons) 34
and 36, respectively.

Neurons 18 and 20 also contain inputs and receive signals
along dendrites, however, these inputs and dendrites are not
shown for simplicity of illustration. Neurons 14 and 16 also
contain inputs and receive signals along axons, however,
these inputs and axons are not shown for simplicity of
illustration. Thus, the neurons 18 and 20 will function as
dendritic neurons when receiving inputs along their den-
dritic connections. Likewise, the neurons 14 and 16 will
function as axonal neurons when sending signals out along
their axonal connections. When any of the neurons 14, 16,
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18 and 20 fire, they will send a pulse out to their axonal and
to their dendritic connections.

Each connection between dendrites 26, 28 and axons 34,
36 are made through a digital synapse device 31 (synapse).
The junctions where the synapse devices are located may be
referred to herein as “cross-point junctions”. In general, in
accordance with an embodiment of the invention, neurons
14 and 16 will “fire” (transmit a pulse) when the inputs they
receive from axonal input connections (not shown) exceed a
threshold. Neurons 18 and 20 will “fire” (transmit a pulse)
when the inputs they receive from dendritic input connec-
tions (not shown) exceed a threshold. In one embodiment,
when neurons 14 and 16 fire they maintain an anti-STFP
(A-STDP) variable that decays. For example, in one
embodiment, the decay period may be 50 ms. The A-STDP
variable is used to achieve STDP by encoding the time since
the last firing of the associated neuron. Such STDP is used
to control “potentiation”, which in this context is defined as
increasing synaptic conductance. When neurons 18, 20 fire
they maintain a D-STDP variable that decays in a similar
fashion as that of neurons 14 and 16.

A-STDP and D-STDP the variables may decay according
to exponential, linear, polynomial, or quadratic functions,
for example. In another embodiment of the invention, the
variables may increase instead of decreasing over time. In
any event, this variable may be used to achieve dendritic
STDP, by encoding the time since the last firing of the
associated neuron. Dendritic STDP is used to control
“depression”, which in this context is defined as decreasing
synaptic conductance.

An external two-way communication environment may
supply sensory inputs and consume motor outputs. Digital
neurons implemented using complementary metal-oxide-
semiconductor (CMOS) logic gates receive spike inputs and
integrate them. The neurons include comparator circuits that
generate spikes when the integrated input exceeds a thresh-
old. In one embodiment, binary synapses are implemented
using transposable 1-bit SRAM cells, wherein each neuron
can be an excitatory or inhibitory neuron. Each learning rule
on each neuron axon and dendrite are reconfigurable as
described hereinbelow.

FIG. 2A shows a block diagram of a reconfigurable neural
network circuit 100 implemented as a circuit chip according
to an embodiment of the invention. The circuit 100 includes
a synapse array, such as the crossbar array 12 in FIG. 1,
interconnecting multiple digital neurons 5 (i.e., Ny, ..., Ny),
such as neurons 14, 16, 18, 20 in FIG. 1. The fully connected
synapse array 12 stores the strength of connection between
each neuron 5 (e.g., integrate and fire electronic neuron).
Each digital neuron 5 receives spike inputs from one or more
other neurons and integrates them, such that when the
integrated input exceeds a threshold, the digital neuron 5
spikes.

In one embodiment of the circuit 100, neuron operation
and parameters (e.g., spiking, integration, learning, external
communication) is reconfigurable, customizable, and
observable. A priority encoder 101 controls access of simul-
taneously spiking neurons 5 to the crossbar array 12 in a
sequential manner. Driver circuits 103 receive digital inputs
from neurons 5 and programs the synapses 31 in the synapse
array 12 using learning rules. Input pads 105 provide input
interfaces to the circuit 100 and output pads provide output
interfaces from the circuit 100. A global finite state machine
102 controls timing and operational phases for operation of
the circuit 100. Each synapse interconnects an axon of a
pre-synaptic neuron via a row of the array 12, with a dendrite
of a post-synaptic neuron via a column of the array 12.
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Referring to the process 190 in FIG. 2B, according to an
embodiment of the invention, within a timestep, the circuit
100 goes through the following sequence of phases for
synapse updating (programming) based on signals from the
global finite state machine:

Process block 191: Phase 1—Determine which neurons 5
spiked in a previous timestep, and reset the potential of
those neurons.

Process block 192: Phase 2—Perform neuron spiking by
pulsing a row (or axon) of the synapse array 12. Read
value of each synapse 31 in the row and pass the value
to a connected neuron 5. Obtain external input for each
neuron.

Process block 193: Phase 3—FEach neuron 5 checks a
column (or dendrite) of the synapse array 12 for
synapses 31 in their “pulsed” state and reads the
synapse values, and integrates the synapse (excitatory/
inhibitory) inputs as external input to the neuron poten-
tial.

Process block 194: Phase 4—Depending on the time
elapsed since each neuron spiked (fired), probabilisti-
cally change a connected synapse value using a pseudo
random number generator such as said LFSR. Write the
new synapse value into the synapse array 12.

Process block 195: Phase 5—Determine which neurons
will spike the next timestep by comparing each neuron
potential against a customized threshold.

FIG. 3 shows details of an example implementation of
digital neuron 5, according to an embodiment of the inven-
tion. In one embodiment, the neuron 5 comprises a recon-
figurable digital CMOS circuit device. Specifically, the
neuron 5 comprises an integration and spike module 6 and
a learning module 7. In the integration and spike module 6,
a multiplexer circuit 6A is used to select all the inputs
arriving at the neuron 5 to integrate to a value held at an
adder circuit 6B. The value in the adder circuit 6B represents
the potential of the neuron 5 (e.g., voltage potential V based
on accumulated input spikes). A comparator circuit 6C is
used to check if the current value in the adder 6B is above
a threshold value. The output of the comparator 6C is used
to signal neuron spiking. This spike signal is then sent to the
priority encoder 101 which then grants the neuron 5 access
to the crossbar synapse array 12 in a sequential manner.

The learning module 7 includes digital counters 7A and
7B, which decay at a pre-specified rate each time step and
are reset to a pre-defined value when the neuron spikes. A
LFSR 7C generates sequences that are maximally random.
During every synapse programming phase, the LFSR 7C
generates a new random number. A comparator circuit 7D
compares the random number with a counter value (i.e.,
from counters 7A and 7B via a multiplexer 7E) to provide a
digital signal that determines whether or not a synapse 31 is
updated (i.e., programmed). As such, synapses 31 are
updated probabilistically according to a learning rule speci-
fied in the decay rate of a counter (i.e., counters 7A and 7B).
In one embodiment, the causal counter 7B is used for
pre-synaptic updates, and the anti-causal counter 7A is used
for post-synaptic update (pre-synaptic and post-synaptic
updates may utilize different learning rules).

Table 1 below shows an example neuron specification in
conjunction with the circuits in FIGS. 2A and 3, according
to an embodiment of the invention.
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TABLE 1

Neuron specification

8 bits + 4 overflow +

4 underflow bits

10 least significant bits (LSBs) derived
from a 15 bit LFSR

8 bits

One (used twice to generate the random
number for causal and anti-causal update)
Two (one for causal and one for anti-
causal). All neuron configurations maybe
customized as needed. One exemplary
configuration is listed in entry below.

1 bit to turn on and off learning

1 bit to specify if neuron is inhibitory or
excitatory (bit is stored in priority encoder)

Number of bits for neuron
potential

Number of bits for LFSR
counter

Number of bits for tau counter
Number of LFSRs per neuron

Number of tau counters
per neuron

Configuration

Table 2 below shows an example neuron configuration for
control and observability in conjunction with the circuits in
FIGS. 2A and 3, according to an embodiment of the inven-
tion. All scan configurations (for control and observability)
could be customized as needed. In Table 2 “b” means bits.

TABLE 2

Neuron reconfiguration/observation

Reconfiguration Control (Scan In) Observation (Scan Out)

8b: Excitatory weight (s) 1b: Excite/Inhibit input (SA out)

8b: Inhibitory weight (s7) 16b: Neuron potential (Vn)

8b: Leak parameter (A) 1b: Spike signal (6 compare out)

8b: External input weight (S,,,) 10b: LFSR output

8b: Threshold 8b * 2: Tau counter output

1b: Learning enable 1b: STDP comparator output
28b: Learning parameters - 8b * 2,

3b * 2, 6b

4b: Represent 16 learning modes

Total: 73b Total: 45b

As noted, in one embodiment each synapse interconnects
an axon of a pre-synaptic neuron with a dendrite of a
post-synaptic neuron. As such, in one embodiment, the
circuit 100 comprises a first learning module for an axonal,
pre-synaptic, neuron, and a second learning module for a
dendritic, post-synaptic neuron, such that each of the learn-
ing modules is reconfigurable independent of the other.

FIG. 4 shows an example implementation of the synapse
crossbar array 12 of FIG. 2A, according to an embodiment
of the invention. The synapses 31 are binary memory
devices, wherein each synapse can have a weight “0”
indicating it is non-conducting, or a weight “1” indicating it
is conducting. In one embodiment, a synapse 31 comprises
a transposable SRAM cell (e.g., transposable 8-T SRAM
cell). The binary synapses 31 are updated probabilistically
(e.g., using random number generators in neurons 5, as
described further above). The crossbar array 12 can com-
prise a NxN transposable SRAM synapse array implement-
ing a fully connected crossbar for N digital neurons 5 (e.g.,
N=16). A transposable cell 31 is utilized for pre-synaptic
(row) and post-synaptic (column) synapse updates. WL
stands for wordlines and BL stands for bitlines as for
memory arrays. For transposability, WL, BL, BL (inversion
of BL) are responsible for the row updates, and WL, BL,
BL . are responsible for the column updates.

FIG. 5 shows an example system timing diagram 120 for
neuron and synapse operation for the circuit 100 in con-
junction with FIGS. 2A, 3 and 4, according to an embodi-
ment of the global finite state machine 102. As illustrated in
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FIG. 5, sequential operation of neurons 5 is in a timestep
implemented utilizing phases/cycles 122 of a digital clock
(hardware (HW) clock), such as may be provided by the
global finite state machine 102. All spiking neurons 5 first
complete their communication in n cycles 123, and the
updates for the synapses 31 on their axons and dendrites are
completed in 2n cycles 124. A horizontal update (axonal
synapse update in array 12) is for updating weights of
synapses in a row of the crossbar array 12, and a vertical
update (dendritic synapse update in array 12) is for updating
weights of synapses in a column of the crossbar array 12.

FIG. 6 shows another system timing diagram 125 for
neuron and synapse operation for the circuit 100 in con-
junction with FIGS. 2A, 3 and 4, for variable timesteps 126,
according to an embodiment of the global finite state
machine 102. The circuit 100 loads input data, performs
neuron/synapse operations and sends out output date. For a
variable timestep operation mode, when the circuit 100 has
completed neuron and synapse operations before end of an
allocated timestep, a neuron/synapse operation completion
signal is generated to indicate that a next time step can begin
without idling for current timestep to end. This provides
overall faster learning time for the circuit 100. For a fixed
timestep operation mode, the completion signal is not gen-
erated. Each software (SW) clock has a number of HW
clocks.

SW clock corresponds to a biological timestep. Within
one biological timestep, multiple operations are performed,
including digital neuron potential integration, learning com-
putation, synapse update, etc. Such operations may be
performed in a sequential and pipelined manner, wherein
each said timestep is divided into multiple (e.g., hundreds)
of HW clock cycles, as shown by example in FIGS. 5-6. The
HW clock cycles govern the digital neuron operations and
synapse array updates as disclosed herein.

FIG. 7 shows a system timing diagram 130 for pipelining
neuron and synapse operation for the circuit 100 in con-
junctions with FIGS. 2A, 3 and 4, according to an embodi-
ment of the global finite state machine 102. The pipelined
operations of circuit 100 include three phases: load input,
neuron/synapse operations (crossbar operation) and send
output. In one example, a single clock of e,g. 1 MHz
frequency is utilized for the HW clocking cycles 122, in each
timestep 132, for data in/out latches, neuron latches, and
other latches, and for clock gating each pipeline phase
separately.

According to embodiments of the invention, the learning
rules can be reconfigured depending on the algorithm or a
certain application and are not limited to STDP learning
rules. For example, anti-STDP, Hebbian, anti-Hebbian, and
any other types of learning rules may be utilized.

FIG. 8 shows learning mode processes 141, 143, 145 for
learning rules STDP, Anti-STDP (A-STDP) and Hebbian,
respectively, in the circuit 100 without constant, according
to an embodiment of the invention. The learning mode
processes are performed in conjunction with neuron circuit
5 in FIG. 2A for probabilistic synapse updates. No synapse
updates are performed for a non-learning mode. The < (tau)
counter value of a digital neuron 5 decreases as time elapses
since the last spike. For a single-bit synapse update, when Tt
reaches 0, a constant (const) may be involved in the learning
process. A synapse update may occur regardless of the value
of T.

Referring to FIG. 9, when a constant is involved in the
learning process, once T reaches 0, the constant is compared
with a random number from LFSR and update is performed
with a certain probability. FIG. 9 shows learning mode
processes 147, 148, 149 for learning rules STDP, Anti-STDP
(A-STDP) and Hebbian, respectively, in the circuit 100 with
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constant, according to an embodiment of the invention. The
learning mode processes are performed in conjunction with
neuron circuit 5 in FIG. 2A for probabilistic synapse
updates.

TABLE 3

Learning modes

Learning STDP, anti-STDP, Hebbian, anti-Hebbian

modes

Learning 8 bits (for causal) + 8 bits (for anti-causal), for amplitude
curve 3 bits (for causal) + 3 bits (for anti-causal), for decay rate

specification 6 bits for constant level comparison
(same for causal and anti-causal)

4 bits to specify learning mode

Left and right learning curves of each learning mode in
FIG. 9 can independently select whether a constant is used
or not.

FIG. 10 shows an example chip architecture 160 based on
the circuit 100, according to an embodiment of the inven-
tion. The synapse crossbar array comprises a NxN array of
synapses 31 for N neurons 5, comprising two connected
layers E1 and E2 of electronic neurons including excitatory
neurons (Ne), and inhibitory neurons (Ni). The global finite
state machine 102 includes a bit that sets the chip either in
E1-E2 mode or fully connected array mode. During an
initialization phase, the weight of synapses 31 in a diagonal
block are set to 0 (as shown in top part of FIG. 11), and are
never allowed to change. Each neuron 5 has 1 bit to specify
if it is an E1 neuron or an E2 neuron. When a neuron spikes,
a flag is set in the priority encoder 101 to indicate if the
spiking neuron is an El1 neuron or an E2 neuron. This
information is used by the other neurons for synapse update.
During an update (learning) phase, a synapse 31 is updated
only if it is at the intersection (cross-point junction in an
array 12) of an E1 neuron and an E2 neuron. Table 4 below
shows example excitatory and inhibitory neuron configura-
tion for E1-E2 mode, according to an embodiment of the
invention.

TABLE 4

Excitatory and inhibitory neuron for E1-E2

Number of excitatory neurons
in E1-E2

Number of inhibitory neurons
in E1-E2

Excitatory neuron (Ne) and
inhibitory neuron (Ni) behavior

X (any number, X + H < N)
H (any number, X + H <N)

Both Ne and Ni use same hardware
infrastructure, but, the parameters

can be set/reconfigured to

provide different behaviors (for Ne
add to, for Ni subtract from, the
neuron potential when a spike arrives).
Axon of each Ni will have X” ON
synapses and dendrite of each

Ni will have “X/2’ ON synapses
connecting to the E2 neurons.

The synapses are not plastic.

This connectivity is initialized

at the beginning of the chip operation.
(In general, however, Ni may have

the exact same behaviors as Ne,
including having plastic synapses.)

Ni output is locally fed into the
synapse crossbar.

When a Ni fires/spikes, a global flag is
set, to indicate that the current incoming
signal at the input ports of receiving
neurons has to be subtracted.

Input and output neurons of
inhibitory neuron for E1-E2

Output of inhibitory neuron?

If a specified learning rule (i.e., E1-E2) uses only less than
N neurons, the remaining neurons that are not participating
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in E1-E2 are inactive. For the inactive neurons, the synapses
on dendrites and axons of inactive neurons are initialized to
0, external input for inactive neurons in every cycle is 0, and
learning is disabled using a configuration bit.

FIG. 11 shows an example application of the chip 100
based on the architecture 160 for pattern recognition in an
input image, according to an embodiment of the invention.
The chip 100 performs non-linear pattern classification, by
interacting with the external environment in the forms of
digital spike inputs and outputs. The neurons 5 in the circuit
100 simulate retinal neurons and during learning phase
based on the input pattern the neurons 5 spike and synapses
31 learn the input image pixel pattern. Not all the pixels that
are lighted have to come in at the same time. The input
image comes in as frames, and the circuit 100 integrates the
frames together as one object. Then, in a recall phase, when
a corrupted frame is provided to the circuit 100, the full
pattern is recalled (i.e., pattern recognition). Any data input
stream, can be learned, classified, and recalled. As such, in
a learning phase, the architecture 160 learns correlations in
spatio-temperal patterns and classification of said patterns.
Once the learning is completed, the circuit can predict and
complete incomplete patterns in a recall phase.

The digital circuit 100 also provides fine-grain verifica-
tion between hardware and software for every spike, neuron
state, and synapse state. For the E1-E2 configuration, com-
paring the spike outputs and neuron/synapse states of hard-
ware and software simulation, a one-to-one equivalence is
achieved for the full-length simulation of 15,000 (biologi-
cal) timesteps. The circuit 100 can be mounted on a stand-
alone card interacting with the external environment such as
a computer or other computing platform (e.g., a mobile
electronic device).

In another embodiment, the present invention provides a
neuronal circuit comprising multi-bit transposable crossbar
array of SRAM synapses for interconnecting digital neu-
rons. The circuit provides general-purpose hardware that
enhances the pattern classification capability of a spiking
neural network by interacting with the external environment
in the forms of digital spike inputs and outputs. In one
implementation, the circuit comprises a low-power digital
CMOS spiking neural network that is reconfigurable, to
implement stochastic STDP on multi-bit synapse array for
interconnecting digital neurons, with improved learning
capability.

In one embodiment, multi-bit (m-bit) synapses are imple-
mented using transposable SRAM cells which can store a
value from O to 2m-1, representing a fine-grain connection
between every neuron connection in a multi-bit synapse
array. In one implementation, the values in the range O to
2m-1 represents the level of conductivity of a synapse. A
priority encoder sequentially allows array access to all
simultaneously spiking neurons to implement communica-
tion of synaptic weights and programming of synapses. A
global finite state machine module controls the entire opera-
tion of the chip including the multi-bit synapse array. Driver
modules receive digital inputs from neurons and program
the multi-bit synapse array.

Each digital neuron comprises a learning module includ-
ing two counters that decay at every pre-specified number of
timesteps and are reset to a pre-defined value when a neuron
spiking event occurs. In a synapse update phase, the learning
module reads the existing multi-bit synapse value from the
synapse array, adds or subtracts the decay counter value to
the value read from the array, and updates the modified new
multi-bit value to the synapse array.
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Timing operations in the update phase with multi-bit
synapse array are such that multiple read and write opera-
tions can occur in the synapse update phase in a timestep. To
reduce read/write latency to the synapse array from each
neuron, the read and write operations are interleaved such
that every hardware cycle is performing either a synapse
read or write, increasing the overall throughput.

FIG. 12 shows a block diagram of a reconfigurable neural
network circuit 200 implemented as a circuit chip including
a multi-bit transposable crossbar array of SRAM synapses
interconnecting digital neurons, according to an embodi-
ment of the invention. The circuit 200 includes a crossbar
array 212 of multi-bit synapses 131 (FIG. 14) interconnect-
ing multiple digital neurons 15 (ie., N;, . . ., N,). The
digital neurons 15 associated with multi-bit SRAM array
212 provide learning capability in a spiking neural network.
Multi-bit synapses provide noise tolerance. Every neuron
operation and parameter (spiking, integration, learning,
external communication) intended for multi-bit synapses is
reconfigurable, customizable, and observable. The circuit
200 achieves improvement in learning time, which enables
more complicated pattern recognition.

The multi-bit synapse array 212 stores the strength of
connection between each neuron 15 in a fine-grain value
between 0 and 2™-1. Digital neurons 15 receive multi-bit
spike inputs and integrate them, such that in each neuron
when the integrated input exceeds a threshold, the neuron
spikes. In one example, within a timestep, neuron and
synapse operations in the circuit 200 go through the follow-
ing sequence of synapse updating (programming):

Phase 1: Determine which neurons 15 spiked in the
previous timestep, and reset the potential of those
neurons.

Phase 2: Implement neuron spiking by pulsing a row (or
axon) of the crossbar array 212. Read value of each
synapse 131 and pass it to a connected neuron 15.
Obtain external input for each neuron.

Phase 3: Each neuron 15 checks its dendrites for synapses
131 in their “pulsed” state and reads their multi-bit
values. Integrate the multi-bit synapse (excitatory/in-
hibitory) input, as external input to the neuron poten-
tial.

Phase 4: Read the existing multi-bit synapse value from
the SRAM array 212. Modity the synapse value by
adding or subtracting the tau counter value, depending
on the learning rule/mode. Write the new multi-bit
synapse value into the SRAM array 212.

Phase 5: Determine which neurons will spike the next
time step by comparing each neuron potential against
the customized threshold.

FIG. 13 shows details of an example implementation of a
digital neuron 15 in the circuit 200, according to an embodi-
ment of the invention. Multi-bit input and output channels
exist between each neuron 15 and the multi-bit synapse
array 212. The neuron 15 comprises an integration and spike
module 56 and a learning module 57. A multi-bit value is
passed on from the synapse array 212 to the neuron 15 for
integration in the spike (read) phase. In the integration and
spike module 56, a multiplexer circuit 56A is used to select
all the inputs arriving at the neuron 15 to integrate to a value
held at an adder circuit 56B. The value in the adder circuit
568 represents the potential of the neuron 15 (e.g., voltage
potential V based on accumulated input spikes). A compara-
tor circuit 56C is used to check if the current value in the
adder 56B is above a threshold value. The output of the
comparator 56C is used to signal neuron spiking. This spike
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signal is then sent to the priority encoder 101 which then
grants the neuron 15 access to the crossbar array 212 in a
sequential manner.

The learning module 57 includes digital counters 57A and
57B, which decay at a pre-specified rate each time step and
are reset to a pre-defined value when the neuron 15 spikes.
In the update (write) phase, the learning module goes
through the process of read-modify-write including: reading
the existing multi-bit synapse value from the synapse array
212, adding or subtracting the decay counter value to the
value read from the array 212, and updating the modified
new multi-bit value to the synapse array 212. As such, the
synaptic strength (multi-bit synapse value) of 131 synapses
between neurons 15 are strengthened or weakened every
time-step according to the time elapsed since a neuron
spiked. The adder 57D adds (or subtracts) the T counter
value to (or from) the current synapse value. Compared to
neuron 5 in FIG. 3, the neuron 15 does not utilize weighting
factors to the input of the multiplexer 56, and does not utilize
a probability generator.

FIG. 14 shows an example implementation of the synapse
crossbar array 212 of FIG. 12, according to an embodiment
of the invention. The synapses 131 are multi-bit memory
devices. In one embodiment, a synapse 131 comprises m
transposable SRAM cells (e.g., transposable 8-T SRAM
cell). The synapses 131 are updated as described further
above. Multiple (m) transposable SRAM cells 31 are used in
each multi-bit synapse 131 for pre-synaptic (row) and post-
synaptic (column) update in the array 212. On each hori-
zontal (row) and vertical (column) direction, a single-bit cell
31 uses a pair of bit lines, such that an multi-bit synapse has
m pairs of bit lines, and the entire multi-bit synapse values
are written at once (i.e., using only one word line). The
crossbar array 212 can comprise a NxN transposable SRAM
synapse array of multi-bit synapse cells 131 implementing a
fully connected crossbar for N digital neurons 15.

FIG. 15 shows an example system timing diagram 121 for
neuron operation for the circuit 200 in conjunction with
FIGS. 12-14, according to an embodiment of the global
finite state machine 102. As illustrated in FIG. 15, sequential
operation of neurons 15 is performed within a timestep,
utilizing phases/cycles 122 of a digital clock (HW clock),
which is governed by the global finite state machine 102. In
an update phase, a read-modify-write process is performed,
and the synapse read/write operations are interleaved to
maximize throughput. All spiking neurons 15 first complete
their communication in n cycles 136, and the updates for the
synapses 131 on the axons and dendrites are completed in 47
cycles 137 for the crossbar array 212.

In one embodiment, the circuit 200 can operate in fixed
time step and variable time step modes, similar to that
described for circuit 100 further above in relation to FIG. 6.
In one embodiment, the circuit 200 can operate in pipeline
fashion, similar to that described for circuit 100 further
above in relation to FIG. 7.

In the circuit 200, learning rules for synapses are based
entirely on causality (no probabilistic synapse updated).
FIG. 16 shows learning mode processes 142, 144, 146 for
learning rules STDP, Anti-STDP (A-STDP) and Hebbian,
respectively, in the circuit 200 for 4-bit synapses 131 with-
out constant, according to an embodiment of the invention.
The value of S is bounded between 0 and 2™-1. The learning
mode processes are performed in conjunction with neuron
circuit 15 in FIG. 12. The T (tau) counter value of a digital
neuron 15 decreases as time elapses since the last spike. For
a multi-bit synapse update, when T reaches 0, a constant
(const) may be involved in the learning process. When a
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constant is not involved in the learning process, the synapse
update is performed as shown in FIG. 16.

Referring to FIG. 17, when a constant is involved in the
learning process, the constant is added to (or subtracted
from) the current multi-bit synapse value once T reaches 0.
FIG. 17 shows learning mode processes 151, 153, 155 for
learning rules STDP, Anti-STDP (A-STDP) and Hebbian,
respectively, in the circuit 200 with constant, according to an
embodiment of the invention. The learning mode processes
are performed in conjunction with neuron circuit 15 in FIG.
12 for synapse updates. Left and right learning curves of
each mode can independently select whether a constant is
used or not. The value of S is bounded between 0 and 27-1.

Table 5 below shows an example neuron configuration for
control and observability in conjunction with the circuits in
FIGS. 12 and 13, according to an embodiment of the
invention. All scan configurations (for control and observ-
ability) could be customized as needed. In Table 5 “b” means
bits.

TABLE 5

Neuron reconfiguration/observability

Reconfiguration Control (Scan In) Observability (Scan Out)

8b: Leak parameter (A) 1b: Excite/Inhibit input (SA out)

8b: External input weight (s,,,) 16b: Neuron potential (Vn)

8b: Threshold 1b: Spike signal (6 compare out)

1b: Learning enable 4b * 2: Tau counter output
18b: Learning parameters - 4b * 2, 6b * 2: Slope counter output

3b * 2, 4b

4b: Represent 16 learning modes 1b: STDP comparator output

Total: 47b Total: 39b
FIG. 18 is a high level block diagram showing an infor-

mation processing circuit 300 useful for implementing one
embodiment of the present invention. The computer system
includes one or more processors, such as processor 302. The
processor 302 is connected to a communication infrastruc-
ture 304 (e.g., a communications bus, cross-over bar, or
network).

The computer system can include a display interface 306
that forwards graphics, text, and other data from the com-
munication infrastructure 304 (or from a frame buffer not
shown) for display on a display unit 308. The computer
system also includes a main memory 310, preferably ran-
dom access memory (RAM), and may also include a sec-
ondary memory 312. The secondary memory 312 may
include, for example, a hard disk drive 314 and/or a remov-
able storage drive 316, representing, for example, a floppy
disk drive, a magnetic tape drive, or an optical disk drive.
The removable storage drive 316 reads from and/or writes to
a removable storage unit 318 in a manner well known to
those having ordinary skill in the art. Removable storage
unit 318 represents, for example, a floppy disk, a compact
disc, a magnetic tape, or an optical disk, etc. which is read
by and written to by removable storage drive 316. As will be
appreciated, the removable storage unit 318 includes a
computer readable medium having stored therein computer
software and/or data.

In alternative embodiments, the secondary memory 312
may include other similar means for allowing computer
programs or other instructions to be loaded into the com-
puter system. Such means may include, for example, a
removable storage unit 320 and an interface 322. Examples
of such means may include a program package and package
interface (such as that found in video game devices), a



US 9,460,383 B2

13
removable memory chip (such as an EPROM, or PROM)
and associated socket, and other removable storage units
320 and interfaces 322 which allow software and data to be
transferred from the removable storage unit 320 to the
computer system.

The computer system may also include a communication
interface 324. Communication interface 324 allows software
and data to be transferred between the computer system and
external devices. Examples of communication interface 324
may include a modem, a network interface (such as an
Ethernet card), a communication port, or a PCMCIA slot and
card, etc. Software and data transferred via communication
interface 324 are in the form of signals which may be, for
example, electronic, electromagnetic, optical, or other sig-
nals capable of being received by communication interface
324. These signals are provided to communication interface
324 via a communication path (i.e., channel) 326. This
communication path 326 carries signals and may be imple-
mented using wire or cable, fiber optics, a phone line, a
cellular phone link, an RF link, and/or other communication
channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory 310 and secondary memory 312, removable storage
drive 316, and a hard disk installed in hard disk drive 314.

Computer programs (also called computer control logic)
are stored in main memory 310 and/or secondary memory
312. Computer programs may also be received via commu-
nication interface 324. Such computer programs, when run,
enable the computer system to perform the features of the
present invention as discussed herein. In particular, the
computer programs, when run, enable the processor 302 to
perform the features of the computer system. Accordingly,
such computer programs represent controllers of the com-
puter system.

From the above description, it can be seen that the present
invention provides a system, computer program product, and
method for implementing the embodiments of the invention.
References in the claims to an element in the singular is not
intended to mean “one and only” unless explicitly so stated,
but rather “one or more.” All structural and functional
equivalents to the elements of the above-described exem-
plary embodiment that are currently known or later come to
be known to those of ordinary skill in the art are intended to
be encompassed by the present claims. No claim element
herein is to be construed under the provisions of 35 U.S.C.
section 112, sixth paragraph, unless the element is expressly
recited using the phrase “means for” or “step for.”

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
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tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A neural network circuit, comprising:

plurality of digital electronic neurons; and

an electronic synapse array comprising a plurality of

digital synapses interconnecting the neurons;

wherein each synapse has a corresponding multi-bit fine-

grain value representing a synaptic weight of the syn-
apse;

wherein each neuron includes a learning module for

updating a synaptic weight of a connected synapse
based on one or more learning rules;

wherein each learning module is independently recon-

figurable; and

wherein each learning module of each neuron includes

one or more digital counters, each digital counter
decays at a corresponding decay rate during each
timestep, and each digital counter resets to a pre-
determined value in response to the neuron generating
a spike signal.

2. The network circuit of claim 1, wherein:

each synapse maintains m bits representing a correspond-

ing multi-bit fine-grain value of the synapse;

each multi-bit fine-grained value is a value from 0 to

2m-1, thereby enabling the synapses to provide noise
tolerance; and

each synapse has m pairs of bit lines, such that a corre-

sponding multi-bit fine-grain value is written at once
using only one word line when a synaptic weight of the
synapse is updated.

3. The network circuit of claim 1, wherein, for each digital
counter, a decay rate corresponding to the digital counter
specifies a learning rule.

4. The network circuit of claim 3, wherein, for each
neuron, a synaptic weight of a connected synapse is updated
based on a learning rule specified in a decay rate of a digital
counter of a learning module of the neuron.

5. The network circuit of claim 3, wherein, for each
neuron, a synaptic weight of a connected synapse is updated
based on a learning rule specified in a decay rate of a digital
counter of a learning module of the neuron and a constant
value.

6. The network circuit of claim 5, wherein the constant
value is added to the synaptic weight of the connected
synapse.

7. The network circuit of claim 5, wherein the constant
value is subtracted from the synaptic weight of the con-
nected synapse.

8. The network circuit of claim 3, wherein, for each
neuron, a learning module of the neuron generates a digital
signal for updating a synaptic weight of a connected syn-
apse.

9. The network circuit of claim 1, wherein the learning
rules include at least one of the following: spike-timing
dependent plasticity (STDP), anti-STDP, Hebbian and anti-
Hebbian.
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10. A method comprising:

interconnecting a plurality of digital electronic neurons
via an electronic synapse array comprising a plurality
of digital synapses; and

for at least one neuron, updating a synaptic weight of a
connected synapse based on one or more learning rules
using a learning module of the neuron;

wherein each synapse has a corresponding multi-bit fine-
grain value representing a synaptic weight of the syn-
apse;

wherein each learning module is independently recon-
figurable; and

wherein each learning module of each neuron includes
one or more digital counters, each digital counter
decays at a corresponding decay rate during each
timestep, and each digital counter resets to a pre-
determined value in response to the neuron generating
a spike signal.

11. The method of claim 10, wherein:

each synapse maintains m bits representing a correspond-
ing multi-bit fine-grain value of the synapse;

each multi-bit fine-grained value is a value from 0 to
2m-1, thereby enabling the synapses to provide noise
tolerance; and

each synapse has m pairs of bit lines, such that a corre-
sponding multi-bit fine-grain value is written at once
using only one word line when a synaptic weight of the
synapse is updated.
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12. The method of claim 10, wherein, for each digital
counter, a decay rate corresponding to the digital counter
specifies a learning rule.

13. The method of claim 12, further comprising:

for each neuron, updating a synaptic weight of a con-
nected synapse based on a learning rule specified in a
decay rate of a digital counter of a learning module of
the neuron.

14. The method of claim 12, further comprising:

for each neuron, updating a synaptic weight of a con-
nected synapse based on a learning rule specified in a
decay rate of a digital counter of a learning module of
the neuron and a constant value.

15. The method of claim 14, further comprising:

adding the constant value to the synaptic weight of the
connected synapse.

16. The method of claim 14, further comprising:

subtracting the constant value from the synaptic weight of
the connected synapse.

17. The method of claim 12, further comprising:

for each neuron, a learning module of the neuron gener-
ating a digital signal for updating a synaptic weight of
a connected synapse.

18. The method of claim 10, wherein the learning rules

include at least one of the following: spike-timing dependent
plasticity (STDP), anti-STDP, Hebbian and anti-Hebbian.
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